Network Computing is part of the Informa Tech Division of Informa PLC

This site is operated by a business or businesses owned by Informa PLC and all copyright resides with them. Informa PLC's registered office is 5 Howick Place, London SW1P 1WG. Registered in England and Wales. Number 8860726.

Faster 3G Easier Said Than Done: Page 6 of 9

The consequence of these design decisions is that the scheduler and re-transmission manager require large buffers to hold all the packets that might need to be resent. This function was not present in earlier functions, and the hardware to support it needs to have been designed in readiness for it for existing implementations to support HSDPA at sufficiently high data rates.

Factors impacting Scheduling
A number of factors will control how well scheduling will work in the field. It is simple to devise a scheduling algorithm that will work well for a few users in the laboratory with artificially generated constructive fading conditions. It is much harder to develop one that works robustly in the field, for many users all with different, complicated and changing situations. There are many circumstances that will affect real-world systems. Not least of those are the evolving capabilities of the terminals themselves, whether they are handsets or data cards inserted into PCs. The latency demands of HSDPA mean that designs will react differently to changing fading conditions and packet delivery speeds.

Similar problems were seen in the early days of the Internet where interactions between the different layers of the protocol stack led to less efficient bandwidth utilisation than expected. Numerous techniques were developed to overcome the problems and inserted into terminal equipment and infrastructural systems to bring performance back up to their expected levels.

If a scheduler is not designed to react to problems, operators may see some users with terminals that are able to handle high-speed transfers starved of bandwidth while other users with less capable systems use up too much of the HS-DSCH bandwidth. Such a situation will see much lower data utilization than expected. A more intelligent scheduler that watches for changes to channel and terminal conditions — and schedules packets for terminals that are able to receive at higher data rates — will improve the overall revenue that can be derived.

However, the need to support different quality-of-service (QoS) contracts with each terminal will further complicate the situation for the scheduler, as it cannot simply deny bandwidth to a terminal with a high QoS setting because it happens to be in a poor reception area or unable to react quickly enough to the data it receives from the basetation.