Network Computing is part of the Informa Tech Division of Informa PLC

This site is operated by a business or businesses owned by Informa PLC and all copyright resides with them. Informa PLC's registered office is 5 Howick Place, London SW1P 1WG. Registered in England and Wales. Number 8860726.

Faster 3G Easier Said Than Done: Page 4 of 9

Moving MAC Control
The more important change that HSDPA makes is to move control of the medium access control (MAC) from the radio network controller (RNC) into the basestation. Crucially, this move enables the use of fast-scheduling algorithms where under constructive fading conditions users are served data based on the channel-quality estimates. This compares to risking high error rates that would be experienced by users in poor reception conditions using a conventional user-priority or round-robin scheme and where the scheduler uses average channel conditions to select the modulation and coding scheme used. As a result, fast scheduling works hand-in-hand with the algorithms used to select optimum modulation and coding schemes.

This greatly increases the responsiveness of the basestation. The 16QAM coding change increases the peak speed, in the same way that a high-powered engine can boost the performance of a car; but it is the MAC change that makes HSDPA deliver a real-world speed increase, much like replacing a learner driver with a Formula One racing driver.

Using the race car example, performance would be better even with the same engine, and here the performance will be noticeably better even if the 16QAM modulation cannot be used. It demonstrates how a shift in the 3G architecture from a traditional "dumb pipe with intelligent center" towards a more datacom like "smart edge" can yield better results.

In all, the datarate has increased seven-fold, the response time has reduced by 80% and the algorithms, scheduling and complexity have increased dramatically. These changes will be hard to achieve in a hardware design that was not architected to support them.

Indeed, some of the early demonstrations only implemented a few of these features, or only achieved limited data rates. While 16QAM modulation is the most obvious change, and easy to demonstrate at a trade fair, the capabilities of the MAC-hs and adaptive control loops are more important but less visible. Developing, testing and "hardening" these algorithms for field deployment is the major challenge for manufactuers.