Network Computing is part of the Informa Tech Division of Informa PLC

This site is operated by a business or businesses owned by Informa PLC and all copyright resides with them. Informa PLC's registered office is 5 Howick Place, London SW1P 1WG. Registered in England and Wales. Number 8860726.

Intel Delivers Industry's First 34-Nanometer NAND Flash Solid-State Drives

 SANTA CLARA, Calif., July 21, 2009 - Intel Corporation is moving to a more advanced, 34-nanometer (nm) manufacturing process for its leading NAND flash-based Solid State Drive (SSD) products, which are an alternative to a computer's hard drive. The move to 34nm will help lower prices of the SSDs up to 60 percent for PC and laptop makers and consumers who buy them due to the reduced die size and advanced engineering design.

The multi-level cell (MLC) Intel?? X25-M Mainstream SATA SSD is aimed at laptop and desktop PCs and available in 80 Gigabyte (GB) and 160GB versions. SSDs are data storage devices found inside computers. Because SSDs have no moving parts they offer faster performance and greater energy efficiency and durability than traditional hard disk drives (HDDs). A draw for gamers, media creators and technology enthusiasts, SSDs have also played a key role in the emergence of ultra-thin and light notebook PCs that are becoming increasingly popular due to their design, size and longer battery life.

"Our goal was to not only be first to achieve 34nm NAND flash memory lithography, but to do so with the same or better performance than our 50nm version," said Randy Wilhelm, Intel vice president and general manager, Intel NAND Solutions Group. "We made quite an impact with our breakthrough SSDs last year, and by delivering the same or even better performance with today's new products, our customers, both consumers and manufacturers, can now enjoy them at a fraction of the cost."

The Intel X25-M on 34nm flash memory is drop-in compatible with the current 50nm version and will continue to be drop-in compatible to replace existing hard disk drives (HDDs).

Compared to its previous 50nm version, the new Intel X25-M offers improved latency and faster random write Input/Output Operations Per Second (IOPS). Specifically, Intel's new SSD provides a 25 percent reduction in latency, for quicker access to data, operating at 65-microsecond latency compared to approximately 4,000 microseconds for an HDD.

  • 1