Network Visibility Through Active Path Testing

Find out how to verify that your network is properly handling SIP voice.

Terry Slattery

July 11, 2017

2 Min Read
NetworkComputing logo in a gray background | NetworkComputing

You've updated your voice calling system. It uses SIP trunking, you've saved money, and everyone is happy. But a few nagging problems let you know it's not working smoothly all the time. How do you tell whether the network is at fault?

By now, you should know the factors that affect voice quality: latency, jitter, and packet loss. Except in some cases like satellite circuits, latency should be low, perhaps 100 to 200 milliseconds at most. Jitter should likewise be low, unless congestion is driving big changes in queue depths at multiple points in the path. Packet loss may be a significant factor as congestion fills buffers in the networking equipment along the path.

How do you know the network is running smoothly? How do you know a voice problem is external to the parts of the network path you administer? You can't answer these questions if you don't have good network monitoring instrumentation.

Network Visibility
To start, the network monitoring system should be monitoring all interfaces in the paths over which voice may travel. This means the network monitoring system needs to be inexpensive and correctly configured to monitor all interfaces. I've seen too many implementations in which cost has limited the use of the monitoring system such that some network interfaces go unmonitored. The result is a lack of visibility into potential causes of packet loss.

I like to instrument a network to record interface errors and drops. Errors are a network interface or media problem, like a dirty optical connection or a noisy WAN circuit. Drops occur when a network interface's buffers fill and another packet needs to transit that interface. Congestion on egress is significantly more common than congestion on ingress. Investigate interfaces that have more than 0.0001% (that's 1x10E-5) packet loss, and fix those with errors. Drops require other measures, which I'll cover below.

Read the rest of this article on No Jitter.

About the Author

Terry Slattery

Principal Architect, NetCraftsmenTerry Slattery is a principal architect at NetCraftsmen, an advanced network consulting firm that specializes in high-profile and challenging network consulting jobs. Terry is currently working on network management, SDN, business strategy consulting, and interesting legal cases. He is the founder of Netcordia, inventor of NetMRI, has been a successful technology innovator in networking during the past 20 years, and is co-inventor on two patents. He has a long history of network consulting and design work, including some of the first Cisco consulting and training. As a consultant to Cisco, he led the development of the current Cisco IOS command line interface. Prior to Netcordia, Terry founded Chesapeake Computer Consultants, which became a Cisco premier training and consulting partner. At Chesapeake, he co-invented and patented the v-LAB system to provide hands-on access to real hardware for the hands-on component of internetwork training classes.Terry co-authored the successful McGraw-Hill text "Advanced IP Routing in Cisco Networks," is the second CCIE (1026) awarded, and is a regular speaker at Enterprise Connect and Interop.

SUBSCRIBE TO OUR NEWSLETTER
Stay informed! Sign up to get expert advice and insight delivered direct to your inbox

You May Also Like


More Insights