Special Coverage Series

Network Computing

Special Coverage Series

Commentary

Kurt Marko
Kurt Marko Contributing Editor

HP Moonshot: A Big Bet On Innovative Engineering

HP's Moonshot servers are a tour de force of engineering that aim to restore the company's innovation groove. Here are the details.

In a sign that innovation is still in the company's DNA, HP has unveiled its first production Moonshot microserver--a bold move that CEO Meg Whitman says "marks the beginning of a new style of IT that will change the infrastructure economics and lay the foundation for the next 20 billion [connected] devices." The product's name is an apt metaphor for the type of initiative HP needs to propel itself back to mindshare, if not market leadership. IDC estimates its server revenue fell an estimated 3.2% year-over-year in the fourth quarter, after a precipitous 11.9% decline in Q3.

Technically, Moonshot is an engineering tour de force of the kind HP was once famous for. It starts with an oddly-sized 4.3U (7.5-inch) chassis with slots for 45 server boards, what HP calls cartridges. Like a blade server, the chassis provides shared power, cooling, interconnect and management. However, unlike typical blade designs the cartridges plug in vertically to a slide-out chassis.

More Insights

Webcasts

More >>

White Papers

More >>

Reports

More >>

The blade comparisons end there because, as HP's Moonshot white paper points out [PDF], the chassis hosts not one, but three independent backplane networks: an Ethernet switching fabric, storage interconnect and what HP calls a cluster fabric. The shipping Moonshot 1500 system includes two removable Ethernet switch modules, supporting four Gigabit links to each switch, though the first server cartridge only includes two Gigabit Ethernet ports. The storage network supports up to four SAS or SATA links, two of which route to external, shared storage and two of which are used for internal, cartridge-to-cartridge interconnects.

Moonshot's cluster fabric is unique and clearly designed to future-proof the platform, as it's unclear how extensively it's used by the first-generation server boards. According to HP's white paper, it's a two-dimensional topology in which "groups of three server cartridges are connected north-south in independent rings and groups of 15 server cartridges are connected east-west in independent rings." There are four lanes in each direction, providing 16 total, that are configured by the cartridge hardware to use one of a variety of supported protocols including PCIe, Ethernet or SAS. However, this means that in the future, when it's possible to mix different cartridge types, system designers will have to pay close attention to how each chooses to use the cluster fabric and do extensive system integration testing.

Which brings us to the server cartridges. HP is able to pack 45 system boards in such a small space by using low-power Centerton Atom S1260 processors, a server-oriented variant of Intel's play for a slice of the tablet market. Unlike current ARM CPUs, the S1260 is a 64-bit x86 part with two hyperthreaded cores (for four total threads) running at 2 GHz and supporting up to 8 GB of ECC RAM, while sipping a mere 8.5 watts. According to this analysis at Anandtech of early performance data from Intel and HP, "performance is going to be heavily dependent on the nature of the workload, with the S1200 designed for and excelling at heavily threaded, simple tasks, while coming up short in lightly threaded scenarios that need bigger, faster cores."

[ Join us at Interop Las Vegas for access to 125+ IT sessions and 300+ exhibiting companies. Register today! ]

Indeed, according to Dave Donatelli, executive vice president and general manager of HP's Enterprise group, that's exactly the workload Moonshot is targeting with this first cartridge: Web hosting, cloud services and scale-out applications in high-performance computing and data visualization. Given the Atom's modest compute resources, Moonshot servers must be dedicated to a single task. There's no virtualization support at this point, although Gerald Kleyn, director, Hyperscale Server Hardware R&D at HP, says as the cartridge portfolio fills out, it does plan to eventually support VMware, KVM and OpenStack.

The real value of Moonshot isn't horsepower, but density, efficiency and cost. HP claims the product uses one-ninth the power and takes an eighth the space at about a quarter the cost of conventional x86 servers. With the shared backplane, integrated management interface, use of HP's iLO remote consoles and support by HP Cluster management software, it's actually feasible to operate a rack stuffed with hundreds of servers, and may be no more complex than a comparable rack of blades.

Next page: HP's Platform Strategy

 1 | 2  | Next Page »


Related Reading



Network Computing encourages readers to engage in spirited, healthy debate, including taking us to task. However, Network Computing moderates all comments posted to our site, and reserves the right to modify or remove any content that it determines to be derogatory, offensive, inflammatory, vulgar, irrelevant/off-topic, racist or obvious marketing/SPAM. Network Computing further reserves the right to disable the profile of any commenter participating in said activities.

 
Disqus Tips To upload an avatar photo, first complete your Disqus profile. | Please read our commenting policy.
 

Editor's Choice

Research: 2014 State of Server Technology

Research: 2014 State of Server Technology

Buying power and influence are rapidly shifting to service providers. Where does that leave enterprise IT? Not at the cutting edge, thatís for sure: Only 19% are increasing both the number and capability of servers, budgets are level or down for 60% and just 12% are using new micro technology.
Get full survey results now! »

Vendor Turf Wars

Vendor Turf Wars

The enterprise tech market used to be an orderly place, where vendors had clearly defined markets. No more. Driven both by increasing complexity and Wall Street demands for growth, big vendors are duking it out for primacy -- and refusing to work together for IT's benefit. Must we now pick a side, or is neutrality an option?
Get the Digital Issue »

WEBCAST: Software Defined Networking (SDN) First Steps

WEBCAST: Software Defined Networking (SDN) First Steps


Software defined networking encompasses several emerging technologies that bring programmable interfaces to data center networks and promise to make networks more observable and automated, as well as better suited to the specific needs of large virtualized data centers. Attend this webcast to learn the overall concept of SDN and its benefits, describe the different conceptual approaches to SDN, and examine the various technologies, both proprietary and open source, that are emerging.
Register Today »

Related Content

From Our Sponsor

How Data Center Infrastructure Management Software Improves Planning and Cuts Operational Cost

How Data Center Infrastructure Management Software Improves Planning and Cuts Operational Cost

Business executives are challenging their IT staffs to convert data centers from cost centers into producers of business value. Data centers can make a significant impact to the bottom line by enabling the business to respond more quickly to market demands. This paper demonstrates, through a series of examples, how data center infrastructure management software tools can simplify operational processes, cut costs, and speed up information delivery.

Impact of Hot and Cold Aisle Containment on Data Center Temperature and Efficiency

Impact of Hot and Cold Aisle Containment on Data Center Temperature and Efficiency

Both hot-air and cold-air containment can improve the predictability and efficiency of traditional data center cooling systems. While both approaches minimize the mixing of hot and cold air, there are practical differences in implementation and operation that have significant consequences on work environment conditions, PUE, and economizer mode hours. The choice of hot-aisle containment over cold-aisle containment can save 43% in annual cooling system energy cost, corresponding to a 15% reduction in annualized PUE. This paper examines both methodologies and highlights the reasons why hot-aisle containment emerges as the preferred best practice for new data centers.

Monitoring Physical Threats in the Data Center

Monitoring Physical Threats in the Data Center

Traditional methodologies for monitoring the data center environment are no longer sufficient. With technologies such as blade servers driving up cooling demands and regulations such as Sarbanes-Oxley driving up data security requirements, the physical environment in the data center must be watched more closely. While well understood protocols exist for monitoring physical devices such as UPS systems, computer room air conditioners, and fire suppression systems, there is a class of distributed monitoring points that is often ignored. This paper describes this class of threats, suggests approaches to deploying monitoring devices, and provides best practices in leveraging the collected data to reduce downtime.

Cooling Strategies for Ultra-High Density Racks and Blade Servers

Cooling Strategies for Ultra-High Density Racks and Blade Servers

Rack power of 10 kW per rack or more can result from the deployment of high density information technology equipment such as blade servers. This creates difficult cooling challenges in a data center environment where the industry average rack power consumption is under 2 kW. Five strategies for deploying ultra-high power racks are described, covering practical solutions for both new and existing data centers.

Power and Cooling Capacity Management for Data Centers

Power and Cooling Capacity Management for Data Centers

High density IT equipment stresses the power density capability of modern data centers. Installation and unmanaged proliferation of this equipment can lead to unexpected problems with power and cooling infrastructure including overheating, overloads, and loss of redundancy. The ability to measure and predict power and cooling capability at the rack enclosure level is required to ensure predictable performance and optimize use of the physical infrastructure resource. This paper describes the principles for achieving power and cooling capacity management.