Special Coverage Series

Network Computing

Special Coverage Series

Commentary

Kurt Marko
Kurt Marko Contributing Editor

EMC ViPR Goes All In on Software-Defined Storage

EMC's ViPR, a new software-defined storage platform, is a big bet on virtualized storage services. ViPR borrows from the SDN playbook with a controller and APIs.

EMC today introduced its ViPR Software-Defined Storage Platform. ViPR, a project that EMC has hinted at, is pure software, unconnected to any particular storage platform. It abstracts storage pools from the underlying hardware arrays and LUNs, and will most likely run as a VM on commodity servers. EMC said ViPR will be released in the second half of this year

As we wrote in this InformationWeek State of Storage report, "2013 looks like the year the phrase 'software defined' displaces 'cloud' as the all-purpose modifier synonymous with everything in IT that is innovative and salubrious." ViPR embodies both the design philosophy and terminology of SDN by separating what EMC calls the control plane of storage--provisioning, management and data migration--from the data plane--blocks, files, LUNs and devices.

More Insights

Webcasts

More >>

White Papers

More >>

Reports

More >>

It also uses the same controller-device archetype made familiar by SDN and OpenFlow. ViPR is the software controller, analogous to an OpenFlow controller like Floodlight in the networking world, while storage arrays, both big iron hardware like VMAX and VNX, or scale out and cloud-enable devices like Isilon or Atmos, handle the data plane analogous to routers and switches in SDN.

Digging into the details, it's clear EMC is taking this whole control-data segmentation paradigm seriously, as ViPR supports a heterogenous mix of hardware devices of widely varying characteristics. For example, a pool could include high-performance SSD or SSD-HDD autotiered capacity in a VMAX or VNX array alongside commodity, high capacity HDDs from a scale out Isilon system.

The latter point is particularly interesting because Isilon devices have traditionally been used for very large, unstructured file systems. However, once incorporated into the ViPR Borg, they inherit all the storage service features of the software controller.

Indeed, EMC is taking heterogeneity seriously as ViPR will also initially support some NetApp systems (as yet unspecified) and will publish a southbound API (again, heavily borrowing from established SDN terminology) that will allow other vendors to integrate their storage hardware into ViPR-controlled pools. And ViPR pools are Olympic-sized, scaling to potentially hundreds of physical arrays and PBytes in size, according to Chris Ratcliffe, VP of Marketing at EMC's Advanced Software Division.

ViPR handles both the creation of storage pools and provisioning of specific storage resources, be they raw blocks, traditional file systems, object stores or even big data distributed (HDFS) file systems. It then leaves the actual data handling and processing to the underlying arrays. In this sense, ViPR embodies more of a hybrid 'software-defined' approach. The ViPR controller handles the northbound application and administration functions while the arrays offload data processing like deduplication or compression and movement.

One obvious conundrum is pools comprised of hardware with vastly different performance characteristics. ViPR deals with this by building a hardware inventory and profiling the various performance parameters, like reliability/availability, speed/IOPs, latency, and available capacity, of associated hardware into an asset database. When provisioning storage for a new application, the system admin or orchestration system, like vCloud or OpenStack, requests storage meeting the requisite application requirements, such as 1 TB at five-9's and 5,000 IOPS. The ViPR system automatically creates the resource on available hardware meeting said requirements.

ViPR also has a northbound API for creating what EMC calls "storage services." These allow programmatic extension of the ViPR ecosystem to support new storage modalities, formats and applications.

For example, out of the box, will EMC support object files and Hadoop using a ViPR-based software overlay. The ViPR Object Data Service exposes REST APIs for Atmos (EMC's object storage appliance), Amazon S3 and Swift (the native OpenStack object store service) meaning pools can potentially use both cloud services and local VNX and Isilon arrays masquerading as object stores. In essence, ViPR tricks applications into seeing a familiar S3 or Swift object store even though the back end may be a traditional file or block storage device. Indeed, this prestidigitation allows data written as objects by a cloud application to be accessed as files by legacy apps.

Similar to the way it provides object support, ViPR also can provision pools as a Hadoop file system (HDFS). This is significant because it means data stored in a traditional block storage VMAX database can be exposed to big data Hadoop applications without moving it to a separate file repository. Theoretically, this could allow the same set of physical data to serve as a traditional transactional database while simultaneously be incorporated into a big data analytics system, in place. "You can run analytics across entire heterogeneous storage infrastructure," said Ratcliffe.

There are over a dozen sessions devoted to software designed storage and data centers at EMC World, and it's clear ViPR is EMC's contribution to the storage component of that vision. It's hard to overstate the significance of this move, as EMC is at risk of being undercut by less expensive rivals in a rapidly commodifying storage market, and as software becomes more important than hardware. That said, while ViPR looks good on paper and demos, its ultimate success depends on EMC quickly making good on all the promises.



Related Reading



Network Computing encourages readers to engage in spirited, healthy debate, including taking us to task. However, Network Computing moderates all comments posted to our site, and reserves the right to modify or remove any content that it determines to be derogatory, offensive, inflammatory, vulgar, irrelevant/off-topic, racist or obvious marketing/SPAM. Network Computing further reserves the right to disable the profile of any commenter participating in said activities.

 
Disqus Tips To upload an avatar photo, first complete your Disqus profile. | Please read our commenting policy.
 

Editor's Choice

Research: 2014 State of Server Technology

Research: 2014 State of Server Technology

Buying power and influence are rapidly shifting to service providers. Where does that leave enterprise IT? Not at the cutting edge, thatís for sure: Only 19% are increasing both the number and capability of servers, budgets are level or down for 60% and just 12% are using new micro technology.
Get full survey results now! »

Vendor Turf Wars

Vendor Turf Wars

The enterprise tech market used to be an orderly place, where vendors had clearly defined markets. No more. Driven both by increasing complexity and Wall Street demands for growth, big vendors are duking it out for primacy -- and refusing to work together for IT's benefit. Must we now pick a side, or is neutrality an option?
Get the Digital Issue »

WEBCAST: Software Defined Networking (SDN) First Steps

WEBCAST: Software Defined Networking (SDN) First Steps


Software defined networking encompasses several emerging technologies that bring programmable interfaces to data center networks and promise to make networks more observable and automated, as well as better suited to the specific needs of large virtualized data centers. Attend this webcast to learn the overall concept of SDN and its benefits, describe the different conceptual approaches to SDN, and examine the various technologies, both proprietary and open source, that are emerging.
Register Today »

Related Content

From Our Sponsor

How Data Center Infrastructure Management Software Improves Planning and Cuts Operational Cost

How Data Center Infrastructure Management Software Improves Planning and Cuts Operational Cost

Business executives are challenging their IT staffs to convert data centers from cost centers into producers of business value. Data centers can make a significant impact to the bottom line by enabling the business to respond more quickly to market demands. This paper demonstrates, through a series of examples, how data center infrastructure management software tools can simplify operational processes, cut costs, and speed up information delivery.

Impact of Hot and Cold Aisle Containment on Data Center Temperature and Efficiency

Impact of Hot and Cold Aisle Containment on Data Center Temperature and Efficiency

Both hot-air and cold-air containment can improve the predictability and efficiency of traditional data center cooling systems. While both approaches minimize the mixing of hot and cold air, there are practical differences in implementation and operation that have significant consequences on work environment conditions, PUE, and economizer mode hours. The choice of hot-aisle containment over cold-aisle containment can save 43% in annual cooling system energy cost, corresponding to a 15% reduction in annualized PUE. This paper examines both methodologies and highlights the reasons why hot-aisle containment emerges as the preferred best practice for new data centers.

Monitoring Physical Threats in the Data Center

Monitoring Physical Threats in the Data Center

Traditional methodologies for monitoring the data center environment are no longer sufficient. With technologies such as blade servers driving up cooling demands and regulations such as Sarbanes-Oxley driving up data security requirements, the physical environment in the data center must be watched more closely. While well understood protocols exist for monitoring physical devices such as UPS systems, computer room air conditioners, and fire suppression systems, there is a class of distributed monitoring points that is often ignored. This paper describes this class of threats, suggests approaches to deploying monitoring devices, and provides best practices in leveraging the collected data to reduce downtime.

Cooling Strategies for Ultra-High Density Racks and Blade Servers

Cooling Strategies for Ultra-High Density Racks and Blade Servers

Rack power of 10 kW per rack or more can result from the deployment of high density information technology equipment such as blade servers. This creates difficult cooling challenges in a data center environment where the industry average rack power consumption is under 2 kW. Five strategies for deploying ultra-high power racks are described, covering practical solutions for both new and existing data centers.

Power and Cooling Capacity Management for Data Centers

Power and Cooling Capacity Management for Data Centers

High density IT equipment stresses the power density capability of modern data centers. Installation and unmanaged proliferation of this equipment can lead to unexpected problems with power and cooling infrastructure including overheating, overloads, and loss of redundancy. The ability to measure and predict power and cooling capability at the rack enclosure level is required to ensure predictable performance and optimize use of the physical infrastructure resource. This paper describes the principles for achieving power and cooling capacity management.