Joe Onisick


Upcoming Events

A Network Computing Webcast:
SSDs and New Storage Options in the Data Center

March 13, 2013
11:00 AM PT / 2:00 PM ET

Solid state is showing up at every level of the storage stack -- as a memory cache, an auxiliary storage tier for hot data that's automatically shuttled between flash and mechanical disk, even as dedicated primary storage, so-called Tier 0. But if funds are limited, where should you use solid state to get the best bang for the buck? In this Network Computing webcast, we'll discuss various deployment options.

Register Now!


Interop Las Vegas 2013
May 6-10, 2013
Mandalay Bay Conference Center
Las Vegas

Attend Interop Las Vegas 2013 and get access to 125+ workshops and conference classes, 350+ exhibiting companies and the latest tech.

Register Now!

More Events »

Subscribe to Newsletter

  • Keep up with all of the latest news and analysis on the fast-moving IT industry with Network Computing newsletters.
Sign Up

See more from this blogger

Why We Need Network Abstraction

The move to highly virtualized data centers and cloud models is straining the network. While traditional data center networks were not designed to support the dynamic nature of today's workloads, the fact is, the emergence of highly virtualized environments is merely exposing issues that have always existed within network constructs. VLANs, VRFs, subnets, routing, security, and so on have been stretched well beyond their original intent. The way these constructs are currently used limits scale, application expansion, contraction and mobility.

VLANs are a simple example. 802.1Q tagging supports a theoretical limit of 4,096 VLANs, with actual implementation typically being lower. This means that in a multitenant environment, your scale is limited to about 4,000 tenants--in theory. In reality, the number is much lower because we tie IP subnets to VLANs, and tenants will typically require more than one subnet.

More Insights

Webcasts

More >>

White Papers

More >>

Reports

More >>

VRFs become another issue as tenants expand. Each tenant network is different and may require separate routing decisions, overlapping subnets, and so on. This leads to hardware limitations, as VRFs are typically run as separate instances of the routing protocol, requiring CPU resources.

Security is another example of unintended interdependency. Today's networks deploy security based on constructs such as addressing, location and VLAN. This has been necessary but is not ideal. The application or service dictates security requirements, so those requirements should be coupled there instead.

Layer 2 adjacency is another complex issue for modern networks. Many applications must exist in the same Layer 2 domain to support capabilities such as virtual machine motion, which causes a need for larger and larger L2 domains. This requires that the VLANs be configured on, and trunked to, any physical switches that a VM may end up on.

While each of these constructs has individual complexities, the real problem arises with the unintended dependencies. IP addressing is broken down into subnets traditionally tied to VLANs on a 1-to-1 basis. This means that an application's L3 communication is dictated by its broadcast domain needs and vice versa. Routing is then tied to the IP scheme, and security, load balancing and quality-of-service policy is often applied based on the VLAN or subnet. These are further tied to physical location based on device configuration (including VLAN, VRF and QoS settings).

There is a need for abstraction of these constructs to provide the originally intended independence that will allow networks to scale as required. This need is shown in current standards pushes: LISP, SDN and VXLAN, for example, are all aimed in some way at removing the tie of location and allowing the application to dictate requirements rather than the infrastructure dictating it.

Within the data center, overlays such as VXLAN are one possible solution. Overlay technologies allow for independent logical networks to be built on top of existing IP infrastructure. They provide some of the abstraction tools required, such as allowing L2 adjacency across L3 networks. Additionally, overlays greatly increase the scale of constructs such as VLANs, moving from 4,000-plus logical networks well into the millions.

These overlays provide one piece of the puzzle of network abstraction. The next step is policy configuration. Rather than traditional methods of applying policy such as security, load balancing and QoS to underlying constructs, these policies should be applied to the applications themselves. Systems like OpenFlow are moving toward this through flow-level programmability, but still have a way to go.

The end goal of the modern network will be service-driven policies and controls. By removing the interdependencies that have been built into today's networks, we will gain the flexibility required by modern compute needs. The purpose of the data center is service delivery, and all aspects must be designed to accomplish that goal.

Disclaimer: This post is not intended as an endorsement for any vendors, services or products.

Joe Onisick is the Founder of Define the Cloud. You can follow his angry rants at http://www.definethecloud.net or on Twitter @jonisick.


Related Reading


Network Computing encourages readers to engage in spirited, healthy debate, including taking us to task. However, Network Computing moderates all comments posted to our site, and reserves the right to modify or remove any content that it determines to be derogatory, offensive, inflammatory, vulgar, irrelevant/off-topic, racist or obvious marketing/SPAM. Network Computing further reserves the right to disable the profile of any commenter participating in said activities.

 
Disqus Tips To upload an avatar photo, first complete your Disqus profile. | Please read our commenting policy.
 
IaaS Providers
Cloud Computing Comparison
With 17 top vendors and features matrixes covering more than 60 decision points, this is your one-stop shop for an IaaS shortlist.
IaaS Providers

Next Gen Network Reports

Premium Content

Research and Reports

The Virtual Network
February 2013

Network Computing: February 2013

Upcoming Events



TechWeb Careers