Network Computing is part of the Informa Tech Division of Informa PLC

This site is operated by a business or businesses owned by Informa PLC and all copyright resides with them. Informa PLC's registered office is 5 Howick Place, London SW1P 1WG. Registered in England and Wales. Number 8860726.

SDN: From Slideware to Software in 2013?

In a game of IT buzzword bingo, SDN would be near the top of anyone's list for 2012. But aside from ample quantities of tradeshow talk, most of the action was in the halls of finance, not on the floors of data centers. VMware's acquisition of SDN darling Nicira, for a mind-blowing $1.26 billion, served notice that the concept of a software-controlled network has legs. But if analyst predictions and vendor roadmaps are to be believed, 2013 should mark the point when SDN moves from being a debate topic to a serious technology alternative for network upgrades and redesigns.

For instance, IDC hiked its 2013 sales estimate of SDN by 80%, from $200 million to $360 million, on its way to $3.7 billion by 2016. That's an impressive CAGR of over 117%. While still tiny by comparison with an Ethernet switch market that runs over $5 billion per quarter, it does indicate SDN is moving into the networking mainstream.

Indeed, Ben Cherian, CSO of SDN startup Midokura (more on them later), with perhaps more than a bit of self-interest, predicts SDN buyouts will increase during the next couple years. He believes every major networking company will recognize the need to have an SDN strategy and put the technology pieces of the puzzle in place by acquiring one of the myriad SDN startups. That's already beginning to happen, with Juniper Networks' $176 million acquisition of Contrail Systems, an SDN startup that was snapped up before the company even officially launched. Cisco Systems also bought two SDN-related startups in 2012, Insieme and vCider.

Yet for SDN to hit IDC's aggressive sales targets, the underlying technology must not only mature, but segment. It may start in 2013 with the industry settling on terminology and a few clearly defined use cases that illustrate concrete and measurable benefits of an SDN-based approach over traditional alternatives, the groundwork for what Cherian believes will be significant customer adoptions in 2014. Midokura is staking its fortunes on software-defined network virtualization, but other promising SDN product categories include improving carrier WAN resiliency, as a platform for L2 data center fabrics (à la OpenFlow), and automation of network device management and service deployments (e.g. Cisco onePK).

But SDN segmentation won't just occur along product lines and feature sets. 2013 will also mark the point at which distinct SDN technology and architectural categories emerge. OpenFlow grabbed the early mindshare, on the way to (prematurely, I believe) becoming the eponym for the entire category. But the contrast between OpenFlow and Midokura's MidoNet product illustrates two key SDN dividing lines that will become clearer as the year progresses.

Functionally, L2 packet forwarding and routing engines are distinct from software-defined virtual overlays on traditional Ethernet. Brad Hedlund makes a nice distinction between SDN re-inventing the physical network--that is, SDpN (software defined physical network)--and being a platform for the virtual network layer--that is, SDvN (software defined virtual network).

At the physical layer, a software-defined network based on a centralized controller that uses OpenFlow can serve as an alternative to standards like TRILL, SPB and MLAG, or proprietary protocols like Juniper QFabric, Brocade VCS or Gnodal Fabric to implement fast, flat, multipathing L2 networks. That's not the only benefit, of course, because applications can be created to take advantage of the programmatic interface in an OpenFlow controller (see Big Switch Networks), but it is a distinct approach to SDN.

Alternatively, and the path Midokura has chosen, is to ride SDN intelligence on top of existing data center networks, however they are implemented, to build virtualized L3 and L4 services. According to Cherian, not only does MidoNet extend traditional L2 vSwitch features like distributed switching and traffic isolation to L3, but it adds L4 services like ACLs/firewall, NAT, load balancing and virtual port and device monitoring. Essentially, MidoNet transforms a physical network of edge routers, fabric switches and virtualized servers into multiple logical (i.e., virtual) networks with separate virtual service provider routers (in public clouds) and tenant environments, each with its own virtual router, switches and host ports.

Next page: Getting Into the Differences

  • 1