Upcoming Events

Where the Cloud Touches Down: Simplifying Data Center Infrastructure Management

Thursday, July 25, 2013
10:00 AM PT/1:00 PM ET

In most data centers, DCIM rests on a shaky foundation of manual record keeping and scattered documentation. OpManager replaces data center documentation with a single repository for data, QRCodes for asset tracking, accurate 3D mapping of asset locations, and a configuration management database (CMDB). In this webcast, sponsored by ManageEngine, you will see how a real-world datacenter mapping stored in racktables gets imported into OpManager, which then provides a 3D visualization of where assets actually are. You'll also see how the QR Code generator helps you make the link between real assets and the monitoring world, and how the layered CMDB provides a single point of view for all your configuration data.

Register Now!

A Network Computing Webinar:
SDN First Steps

Thursday, August 8, 2013
11:00 AM PT / 2:00 PM ET

This webinar will help attendees understand the overall concept of SDN and its benefits, describe the different conceptual approaches to SDN, and examine the various technologies, both proprietary and open source, that are emerging. It will also help users decide whether SDN makes sense in their environment, and outline the first steps IT can take for testing SDN technologies.

Register Now!

More Events »

Subscribe to Newsletter

  • Keep up with all of the latest news and analysis on the fast-moving IT industry with Network Computing newsletters.
Sign Up

Wireless for Beginners Part 2: Avoiding Collisions

Part one of this introduction outlined the basics of radio frequencies and waves. Part two explores the challenges of the half duplex properties of wireless networking, and mechanisms for avoiding collisions that would disrupt traffic.

Wireless technologies, unlike wired IEEE 802.3 technologies, are half duplex. That means a wireless device (AP or endpoint) can listen or talk, but not both at the same time. In addition, in any given radio frequency (RF) region that contains multiple wireless devices, only one device can talk at a time. This creates difficulties in using RF as a shared medium. For instance, because only one device can be transmitting at a time, a single slow device has the potential to slow down all the wireless traffic in that region. It also introduces the potential for collisions. (Note: In this discussion, I use the term "RF region" loosely because it's not necessarily limited to a group of devices or a specific physical area. I'll discuss RF regions in a subsequent post.)

More Insights

Webcasts

More >>

White Papers

More >>

Reports

More >>

Wireless is a shared medium, and in any given RF region, all the wireless devices (APs and endpoints) share the same air space. This can lead to collisions if more than one device tries to communicate simultaneously. Wired technologies have techniques for collision detection and collision avoidance, such as CSMA/CD (Carrier Sense Multiple Access/Collision Detection) on 802.3 networks. On a wired network, if a collision is detected, packets can be resent. In wireless, we don't have the luxury of detecting collisions and resending packets because there's no way to detect a collision over the air. Instead, WLANs have to make absolutely sure there is no collision. To do so, only one device in the RF region can transmit at any given time.

802.11 WLANs have mechanisms in place to make sure that happens, including CSMA/CA (Carrier Sense Multiple Access/Collision Avoidance) and RTS/CTS (Request To Send/Clear To Send).

Wireless endpoints use CSMA/CA, a rudimentary but well-orchestrated series of listening periods followed by back-off timers to determine when the air is free for devices to send packets. These mechanisms have controls in place to prevent collisions in a controlled environment.

Sometimes, however, more rigid control of the air is required. RTS/CTS collision avoidance mechanisms are typically enabled on endpoint devices that may be out of range from other endpoints, a situation called hidden node. Wireless endpoints transmit logistical details with their data payload, including an announcement that they are transmitting and an expectation of how long they need the air. If endpoints A and B are too far apart, they can't hear each other's announcements. If endpoint A can't hear endpoint B's transmissions, both endpoints will think the air is free. If they transmit at the same time, it causes collisions. RTS/CTS is designed to address this problem.

Note that RTS/CTS adds overhead because the sender and receiver (usually the AP) have to exchange an additional set of packets before a transmission occurs. Thus, administrators should take care when enabling RTS/CTS. Administrators must monitor and document changes in performance and collisions to ensure changes to collision avoidance mechanisms aren't have a negative effect on the wireless network.

Jennifer Jabbusch Minella is CISO and infrastructure security specialist at Carolina Advanced Digital.


Related Reading


Network Computing encourages readers to engage in spirited, healthy debate, including taking us to task. However, Network Computing moderates all comments posted to our site, and reserves the right to modify or remove any content that it determines to be derogatory, offensive, inflammatory, vulgar, irrelevant/off-topic, racist or obvious marketing/SPAM. Network Computing further reserves the right to disable the profile of any commenter participating in said activities.

 
Disqus Tips To upload an avatar photo, first complete your Disqus profile. | Please read our commenting policy.
 
Vendor Comparisons
Network Computing’s Vendor Comparisons provide extensive details on products and services, including downloadable feature matrices. Our categories include:

Research and Reports

Network Computing: April 2013



TechWeb Careers