Upcoming Events

A Network Computing Webcast:
SSDs and New Storage Options in the Data Center

March 13, 2013
11:00 AM PT / 2:00 PM ET

Solid state is showing up at every level of the storage stack -- as a memory cache, an auxiliary storage tier for hot data that's automatically shuttled between flash and mechanical disk, even as dedicated primary storage, so-called Tier 0. But if funds are limited, where should you use solid state to get the best bang for the buck? In this Network Computing webcast, we'll discuss various deployment options.

Register Now!


Interop Las Vegas 2013
May 6-10, 2013
Mandalay Bay Conference Center
Las Vegas

Attend Interop Las Vegas 2013 and get access to 125+ workshops and conference classes, 350+ exhibiting companies and the latest tech.

Register Now!

More Events »

Subscribe to Newsletter

  • Keep up with all of the latest news and analysis on the fast-moving IT industry with Network Computing newsletters.
Sign Up

Wireless for Beginners Part 2: Avoiding Collisions

Part one of this introduction outlined the basics of radio frequencies and waves. Part two explores the challenges of the half duplex properties of wireless networking, and mechanisms for avoiding collisions that would disrupt traffic.

Wireless technologies, unlike wired IEEE 802.3 technologies, are half duplex. That means a wireless device (AP or endpoint) can listen or talk, but not both at the same time. In addition, in any given radio frequency (RF) region that contains multiple wireless devices, only one device can talk at a time. This creates difficulties in using RF as a shared medium. For instance, because only one device can be transmitting at a time, a single slow device has the potential to slow down all the wireless traffic in that region. It also introduces the potential for collisions. (Note: In this discussion, I use the term "RF region" loosely because it's not necessarily limited to a group of devices or a specific physical area. I'll discuss RF regions in a subsequent post.)

More Insights

Webcasts

More >>

White Papers

More >>

Reports

More >>

Wireless is a shared medium, and in any given RF region, all the wireless devices (APs and endpoints) share the same air space. This can lead to collisions if more than one device tries to communicate simultaneously. Wired technologies have techniques for collision detection and collision avoidance, such as CSMA/CD (Carrier Sense Multiple Access/Collision Detection) on 802.3 networks. On a wired network, if a collision is detected, packets can be resent. In wireless, we don't have the luxury of detecting collisions and resending packets because there's no way to detect a collision over the air. Instead, WLANs have to make absolutely sure there is no collision. To do so, only one device in the RF region can transmit at any given time.

802.11 WLANs have mechanisms in place to make sure that happens, including CSMA/CA (Carrier Sense Multiple Access/Collision Avoidance) and RTS/CTS (Request To Send/Clear To Send).

Wireless endpoints use CSMA/CA, a rudimentary but well-orchestrated series of listening periods followed by back-off timers to determine when the air is free for devices to send packets. These mechanisms have controls in place to prevent collisions in a controlled environment.

Sometimes, however, more rigid control of the air is required. RTS/CTS collision avoidance mechanisms are typically enabled on endpoint devices that may be out of range from other endpoints, a situation called hidden node. Wireless endpoints transmit logistical details with their data payload, including an announcement that they are transmitting and an expectation of how long they need the air. If endpoints A and B are too far apart, they can't hear each other's announcements. If endpoint A can't hear endpoint B's transmissions, both endpoints will think the air is free. If they transmit at the same time, it causes collisions. RTS/CTS is designed to address this problem.

Note that RTS/CTS adds overhead because the sender and receiver (usually the AP) have to exchange an additional set of packets before a transmission occurs. Thus, administrators should take care when enabling RTS/CTS. Administrators must monitor and document changes in performance and collisions to ensure changes to collision avoidance mechanisms aren't have a negative effect on the wireless network.

Jennifer Jabbusch Minella is CISO and infrastructure security specialist at Carolina Advanced Digital.


Related Reading


Network Computing encourages readers to engage in spirited, healthy debate, including taking us to task. However, Network Computing moderates all comments posted to our site, and reserves the right to modify or remove any content that it determines to be derogatory, offensive, inflammatory, vulgar, irrelevant/off-topic, racist or obvious marketing/SPAM. Network Computing further reserves the right to disable the profile of any commenter participating in said activities.

 
Disqus Tips To upload an avatar photo, first complete your Disqus profile. | Please read our commenting policy.
 
IaaS Providers
Cloud Computing Comparison
With 17 top vendors and features matrixes covering more than 60 decision points, this is your one-stop shop for an IaaS shortlist.
IaaS Providers

Research and Reports

The Virtual Network
February 2013

Network Computing: February 2013

Upcoming Events



TechWeb Careers