Special Coverage Series

Network Computing

Special Coverage Series

Commentary

Howard Marks
Howard Marks Network Computing Blogger

The Next Step For Flash: 3D

2D NAND flash is fast reaching its limit but Samsung's new 3D chip is an encouraging development in flash memory's evolution.

It’s hard to overstate the impact that affordable flash memory has had in the storage business. Not since the introduction of Fibre Channel SANs in the late 90s has a new technology so significantly changed the way we use and manage storage. Today, primary storage uses flash with disk drives relegated to a secondary role holding less active data.

The problem is that we know the 2D NAND flash we’re using now has a limited future. Flash is a stored charge device, and as geometries shrink, the number of trapped electrons that indicates a given memory state in a cell also shrinks. Having fewer electrons between the 01 state and the 10 state in a Multi-Level Cell (MLC) means that the escape of just a few makes the data unreliable. Since the insulating layers also have to be thinner, they start leaking sooner as they’re eroded by the erase voltage.

More Insights

Webcasts

More >>

White Papers

More >>

Reports

More >>

We can see that effect if we look at how MLC flash endurance has fallen with each new shrink of the technology. The old Intel X25-M SSD used 50nm flash with an endurance of over 10,000 P/E cycles; today’s 1X (16-19NM) is down to about 7,000. Luckily, the ECC and signal processing capabilities of our SSD controllers have advanced faster than the flash they get to control has degraded, but at some point even smart software will meet its match.

The general consensus is that somewhere around 8nm, we reach the point where the data’s just not good enough for long enough to make it worthwhile. At that point, the overprovisioning and additional ECC the flash needs cost more than the smaller geometry saves.

Since we should be seeing 10nm flash by the end of this decade, academics and chip makers have been looking for what comes next. Samsung made it clear this week that the next step is 3D flash by announcing that it's mass producing its 3D vertical NAND (V-NAND) flash memory chip.

[Diablo Technologies' new Memory Channel Storage devices plug flash storage into the DIMM slots. Could it mean faster servers in the future? Read the details in "Putting Flash On The Memory Bus"]

Most traditional memory chips look like my new hometown of Santa Fe, N.M., where I can count the number of buildings over four stories high. They build up the floating gates that make each memory cell by stacking layers, but the cells themselves each sit on the substrate in a two-dimension array.

Samsung’s new 128Gbit chip uses a new charge-trap architecture rather than floating gate cells and stacks one charge trap on top of the other like New York stacks apartments, which increases the amount of memory Samsung can wring out of a wafer. Higher density means lower costs, which is why we shrink geometries anyway, so the 3D model should mean we can expect flash prices to continue to fall over time especially if, as it claims, Samsung can stack 24 layers.

Samsung didn’t announce how much data a cell in this new V-NAND holds or the geometry; since it achieves similar density in its 1Xnm TLC chips, I’m assuming this chip is based on an older, larger geometry.

I for one am breathing a little easier, as 3D flash should be able to fill the gap until some of the really interesting alternatives like resistive RAM (ReRAM), phase change memory (PCM) and electron spin-transfer torque memory reach maturity.



Related Reading



Network Computing encourages readers to engage in spirited, healthy debate, including taking us to task. However, Network Computing moderates all comments posted to our site, and reserves the right to modify or remove any content that it determines to be derogatory, offensive, inflammatory, vulgar, irrelevant/off-topic, racist or obvious marketing/SPAM. Network Computing further reserves the right to disable the profile of any commenter participating in said activities.

 
Disqus Tips To upload an avatar photo, first complete your Disqus profile. | Please read our commenting policy.
 

Editor's Choice

Research: 2014 State of Server Technology

Research: 2014 State of Server Technology

Buying power and influence are rapidly shifting to service providers. Where does that leave enterprise IT? Not at the cutting edge, thatís for sure: Only 19% are increasing both the number and capability of servers, budgets are level or down for 60% and just 12% are using new micro technology.
Get full survey results now! »

Vendor Turf Wars

Vendor Turf Wars

The enterprise tech market used to be an orderly place, where vendors had clearly defined markets. No more. Driven both by increasing complexity and Wall Street demands for growth, big vendors are duking it out for primacy -- and refusing to work together for IT's benefit. Must we now pick a side, or is neutrality an option?
Get the Digital Issue »

WEBCAST: Software Defined Networking (SDN) First Steps

WEBCAST: Software Defined Networking (SDN) First Steps


Software defined networking encompasses several emerging technologies that bring programmable interfaces to data center networks and promise to make networks more observable and automated, as well as better suited to the specific needs of large virtualized data centers. Attend this webcast to learn the overall concept of SDN and its benefits, describe the different conceptual approaches to SDN, and examine the various technologies, both proprietary and open source, that are emerging.
Register Today »

Related Content

From Our Sponsor

How Data Center Infrastructure Management Software Improves Planning and Cuts Operational Cost

How Data Center Infrastructure Management Software Improves Planning and Cuts Operational Cost

Business executives are challenging their IT staffs to convert data centers from cost centers into producers of business value. Data centers can make a significant impact to the bottom line by enabling the business to respond more quickly to market demands. This paper demonstrates, through a series of examples, how data center infrastructure management software tools can simplify operational processes, cut costs, and speed up information delivery.

Impact of Hot and Cold Aisle Containment on Data Center Temperature and Efficiency

Impact of Hot and Cold Aisle Containment on Data Center Temperature and Efficiency

Both hot-air and cold-air containment can improve the predictability and efficiency of traditional data center cooling systems. While both approaches minimize the mixing of hot and cold air, there are practical differences in implementation and operation that have significant consequences on work environment conditions, PUE, and economizer mode hours. The choice of hot-aisle containment over cold-aisle containment can save 43% in annual cooling system energy cost, corresponding to a 15% reduction in annualized PUE. This paper examines both methodologies and highlights the reasons why hot-aisle containment emerges as the preferred best practice for new data centers.

Monitoring Physical Threats in the Data Center

Monitoring Physical Threats in the Data Center

Traditional methodologies for monitoring the data center environment are no longer sufficient. With technologies such as blade servers driving up cooling demands and regulations such as Sarbanes-Oxley driving up data security requirements, the physical environment in the data center must be watched more closely. While well understood protocols exist for monitoring physical devices such as UPS systems, computer room air conditioners, and fire suppression systems, there is a class of distributed monitoring points that is often ignored. This paper describes this class of threats, suggests approaches to deploying monitoring devices, and provides best practices in leveraging the collected data to reduce downtime.

Cooling Strategies for Ultra-High Density Racks and Blade Servers

Cooling Strategies for Ultra-High Density Racks and Blade Servers

Rack power of 10 kW per rack or more can result from the deployment of high density information technology equipment such as blade servers. This creates difficult cooling challenges in a data center environment where the industry average rack power consumption is under 2 kW. Five strategies for deploying ultra-high power racks are described, covering practical solutions for both new and existing data centers.

Power and Cooling Capacity Management for Data Centers

Power and Cooling Capacity Management for Data Centers

High density IT equipment stresses the power density capability of modern data centers. Installation and unmanaged proliferation of this equipment can lead to unexpected problems with power and cooling infrastructure including overheating, overloads, and loss of redundancy. The ability to measure and predict power and cooling capability at the rack enclosure level is required to ensure predictable performance and optimize use of the physical infrastructure resource. This paper describes the principles for achieving power and cooling capacity management.