Special Coverage Series

Network Computing

Special Coverage Series

Commentary

Kurt Marko
Kurt Marko Contributing Editor

Solid-State Storage: On The Road To Datacenter Domination

SSDs are displacing hard drives at a rapid clip in the datacenter, as enterprises and cloud providers find them an increasingly attractive low-power, faster storage option.

Solid-state storage is marching through the datacenter, displacing disks in everything from servers to standalone storage arrays. The reasons are clear: significantly lower power, faster access times -- particularly for reads -- and most importantly, price points that make SSDs both technically feasible and fiscally preferable alternative to mechanical disks for more and more applications.

SSDs are certainly becoming more common in enterprise datacenters, according to InformationWeek's 2014 State of Enterprise Storage Survey. The survey showed 40% of survey respondents using SSDs in disk arrays, up eight points from last year, while 39% now deploy SSDs in servers, up 10 points from last year. Deployments are still broad, but not deep, as nearly two-thirds of survey respondents outfit 20% or fewer of their servers with SSDs, and just 48% have SSDs in more than 20% of their storage arrays.

More Insights

Webcasts

More >>

White Papers

More >>

Reports

More >>

While enterprise SSD use is clearly on the rise, the big driver of SSD adoption is cloud service providers (CSPs) like Apple, Facebook, Google and Microsoft using SSDs in ways few in the industry would have predicted. Early solid-state deployments focused on high-end, transaction-heavy applications where their I/O throughput meant one or two SSDs could replace a shelf full of expensive 15K rpm SAS HDDs. Today, rapid price erosion -- particularly for consumer-grade flash memory -- means CSPs are now turning to SSDs for bulk data storage and caching -- what Kevin Dibelius, director of enterprise storage at Micron, calls "read often, write few" applications.

Read-dominant applications are a good fit for cheaper consumer-grade drives since they don't exacerbate the most significant shortcoming of NAND flash devices: durability. As Nimble Storage Marketing VP Radhika Krishnan points out, there's an inherent tradeoff between flash capacity and reliability. Higher density is achieved using tighter process geometries, multi-level memory cells and less error correction data, all of which make the device less durable and reliable. This doesn't bother CSPs since they are increasingly using flash for cold, archival storage on highly redundant and distributed file systems, where a drive or even system failure isn't catastrophic.

The result is a dramatic change in flash requirements. In the past, when high IOPs, transaction-oriented workloads were the predominant SSD application, devices were typically specified to achieve 10 drive fills per day for 5 years, Dibelius said. That's 10 complete writes of every memory cell, every day for five years or almost 20,000 write cycles. Today, customers often need products only good for one-fill per day, or less -- specs that are in line with consumer-grade MLC drives, he said. Indeed, he said MLC is appropriate for about 90% of Micron's new customer inquiries.

In fact, Dibelius notes that some CSPs have even asked to buy off-spec NAND chips, i.e., those that have failed Micron's QA testing, so they can roll their own flash memory storage systems at an even cheaper price. They can do this because their cloud infrastructure is sufficiently redundant that a high level of drive failures doesn't compromise data integrity. Although Micron hasn't yet sold any of these testing room rejects out of concern over the long-term customer support implications, it's clear that for some flash buyers, price and capacity is far more important than performance, reliability and write endurance.

Even with MLC SSDs crashing through the $1/GB barrier, there's still quite a price and capacity gap between flash and hard disks. However, some flash advocates, such as John Scaramuzzo, SVP and GM of SanDisk's enterprise group, argue that the rate of solid- state memory technology evolution has so far surpassed that of magnetic hard disks that the gap is rapidly closing. HDD manufacturers resorting to increasingly abstruse and expensive techniques like shingled magnetic recording and helium-filled drives illustrate Scaramuzzo's point that HDDs "are running out of gas."

[Read why Howard Marks thinks spinning disks still will be the better bargain through 2020 in "SSDs Cheaper Than Hard Drives? Not In This Decade."]

Meanwhile, NAND flash technology marches on. Scaramuzzo predicts 4 and 8 TB drives by year end and 16 TB next year. Dibelius sets the bar even higher, claiming that Micron's new 16 nm process technology and 16-die stacks should allow the company to achieve capacities of 25 TB before needing to move onto the next so-called one-y (sub-16 nm) technology in a year or two. Of course, these will be MLC devices, but the upshot is that more and more bulk storage applications will become feasible and actually preferable to run on flash systems.

In the near-term, hybrid flash-HDD systems like those from Avere Systems, Nimble, Tegile and most of the major storage vendors can deliver all-flash performance with hard-disk economics. They do this by dynamically adjusting the size of solid state caches and storage partitions in ways that are transparent and non-disruptive to applications.

Much like flash has gradually displaced hard disks for most consumer devices, it is marching through the data center and taking up a growing slice of the storage pie. Although still a relatively small share of total storage, the emergence of flash as a viable bulk cold storage medium for CSPs coupled with the rapid pace of technology improvement, means that predominantly- or all-flash data centers will be a reality for many organizations within this decade.



Related Reading



Network Computing encourages readers to engage in spirited, healthy debate, including taking us to task. However, Network Computing moderates all comments posted to our site, and reserves the right to modify or remove any content that it determines to be derogatory, offensive, inflammatory, vulgar, irrelevant/off-topic, racist or obvious marketing/SPAM. Network Computing further reserves the right to disable the profile of any commenter participating in said activities.

 
Disqus Tips To upload an avatar photo, first complete your Disqus profile. | Please read our commenting policy.
 

Editor's Choice

Research: 2014 State of Server Technology

Research: 2014 State of Server Technology

Buying power and influence are rapidly shifting to service providers. Where does that leave enterprise IT? Not at the cutting edge, thatís for sure: Only 19% are increasing both the number and capability of servers, budgets are level or down for 60% and just 12% are using new micro technology.
Get full survey results now! »

Vendor Turf Wars

Vendor Turf Wars

The enterprise tech market used to be an orderly place, where vendors had clearly defined markets. No more. Driven both by increasing complexity and Wall Street demands for growth, big vendors are duking it out for primacy -- and refusing to work together for IT's benefit. Must we now pick a side, or is neutrality an option?
Get the Digital Issue »

WEBCAST: Software Defined Networking (SDN) First Steps

WEBCAST: Software Defined Networking (SDN) First Steps


Software defined networking encompasses several emerging technologies that bring programmable interfaces to data center networks and promise to make networks more observable and automated, as well as better suited to the specific needs of large virtualized data centers. Attend this webcast to learn the overall concept of SDN and its benefits, describe the different conceptual approaches to SDN, and examine the various technologies, both proprietary and open source, that are emerging.
Register Today »

Related Content

From Our Sponsor

How Data Center Infrastructure Management Software Improves Planning and Cuts Operational Cost

How Data Center Infrastructure Management Software Improves Planning and Cuts Operational Cost

Business executives are challenging their IT staffs to convert data centers from cost centers into producers of business value. Data centers can make a significant impact to the bottom line by enabling the business to respond more quickly to market demands. This paper demonstrates, through a series of examples, how data center infrastructure management software tools can simplify operational processes, cut costs, and speed up information delivery.

Impact of Hot and Cold Aisle Containment on Data Center Temperature and Efficiency

Impact of Hot and Cold Aisle Containment on Data Center Temperature and Efficiency

Both hot-air and cold-air containment can improve the predictability and efficiency of traditional data center cooling systems. While both approaches minimize the mixing of hot and cold air, there are practical differences in implementation and operation that have significant consequences on work environment conditions, PUE, and economizer mode hours. The choice of hot-aisle containment over cold-aisle containment can save 43% in annual cooling system energy cost, corresponding to a 15% reduction in annualized PUE. This paper examines both methodologies and highlights the reasons why hot-aisle containment emerges as the preferred best practice for new data centers.

Monitoring Physical Threats in the Data Center

Monitoring Physical Threats in the Data Center

Traditional methodologies for monitoring the data center environment are no longer sufficient. With technologies such as blade servers driving up cooling demands and regulations such as Sarbanes-Oxley driving up data security requirements, the physical environment in the data center must be watched more closely. While well understood protocols exist for monitoring physical devices such as UPS systems, computer room air conditioners, and fire suppression systems, there is a class of distributed monitoring points that is often ignored. This paper describes this class of threats, suggests approaches to deploying monitoring devices, and provides best practices in leveraging the collected data to reduce downtime.

Cooling Strategies for Ultra-High Density Racks and Blade Servers

Cooling Strategies for Ultra-High Density Racks and Blade Servers

Rack power of 10 kW per rack or more can result from the deployment of high density information technology equipment such as blade servers. This creates difficult cooling challenges in a data center environment where the industry average rack power consumption is under 2 kW. Five strategies for deploying ultra-high power racks are described, covering practical solutions for both new and existing data centers.

Power and Cooling Capacity Management for Data Centers

Power and Cooling Capacity Management for Data Centers

High density IT equipment stresses the power density capability of modern data centers. Installation and unmanaged proliferation of this equipment can lead to unexpected problems with power and cooling infrastructure including overheating, overloads, and loss of redundancy. The ability to measure and predict power and cooling capability at the rack enclosure level is required to ensure predictable performance and optimize use of the physical infrastructure resource. This paper describes the principles for achieving power and cooling capacity management.