Kurt Marko

Contributing Editor


Upcoming Events

Where the Cloud Touches Down: Simplifying Data Center Infrastructure Management

Thursday, July 25, 2013
10:00 AM PT/1:00 PM ET

In most data centers, DCIM rests on a shaky foundation of manual record keeping and scattered documentation. OpManager replaces data center documentation with a single repository for data, QRCodes for asset tracking, accurate 3D mapping of asset locations, and a configuration management database (CMDB). In this webcast, sponsored by ManageEngine, you will see how a real-world datacenter mapping stored in racktables gets imported into OpManager, which then provides a 3D visualization of where assets actually are. You'll also see how the QR Code generator helps you make the link between real assets and the monitoring world, and how the layered CMDB provides a single point of view for all your configuration data.

Register Now!

A Network Computing Webinar:
SDN First Steps

Thursday, August 8, 2013
11:00 AM PT / 2:00 PM ET

This webinar will help attendees understand the overall concept of SDN and its benefits, describe the different conceptual approaches to SDN, and examine the various technologies, both proprietary and open source, that are emerging. It will also help users decide whether SDN makes sense in their environment, and outline the first steps IT can take for testing SDN technologies.

Register Now!

More Events »

Subscribe to Newsletter

  • Keep up with all of the latest news and analysis on the fast-moving IT industry with Network Computing newsletters.
Sign Up

See more from this blogger

Newest Broadcom XLP Processors Promise Performance Leap

While Broadcom may be best known for its StrataXGS switch silicon, the company's technology leadership is perhaps most apparent in its high-end XLP family of communications processors. Broadcom acquired the core technology when it bought NetLogic Microsystems, and according to Chris O'Reilly, product marketing director for the processor and wireless infrastructure business, the first fruit of that union developed entirely at Broadcom is the high-performance iteration of the firm's second-generation XLP products, the XLP900 series.

Based on NetLogic's NXCPU cores using a 64-bit MIPS architecture, the XLP900 achieves what Broadcom likens to supercomputer performance of more than 1 trillion operations per second and packet processing throughput of 160 Gbps. This is made possible by using a 28nm process node to pack over 5 billion transistors onto a single chip. This density enables 20 CPU cores, each a superscalar module supporting four simultaneous instruction issues and threads (better known by the Intel label, hyper-threading) and advanced out-of-order execution, along with a 3-level cache and hardware virtualization. This effectively providing 80 independent processing cores.

More Insights

Webcasts

More >>

White Papers

More >>

Reports

More >>

But that's just the computational guts. The XLP900 also includes a host of autonomous (that is, not requiring CPU intervention) hardware accelerators for deep packet inspection (DPI), RAID, deduplication, compression, RSA cryptography, packet processing and I/O acceleration for third-generation protocols including PCIe (16 lanes), SATA and USB.

A system on a chip (SoC) with this many modules needs a high-bandwidth, low-latency highway for passing data on chip, so they are all connected by an intrachip messaging network that O'Reilly calls a ring-of-rings 2D torus (for the curious, this PDF describes the technique in detail) with more than 2 Tbps of bandwidth. If the performance of a single device isn't up to the task, up to eight XLP900s can be interconnected in a low-latency grid network, with full cache coherency and inter-processor interrupts (ICI) to create systems with up to 640 virtualized cores and 1.28 Tbps of networking performance.

With specs like these, don't expect to find an XLP900 in your next UTM appliance or SOHO NAS box, unlike Cavium's recently announced OCTEON III that uses a similar 28nm process. For those uses, that's where O'Reilly said the chip's little brothers--the single and dual CPU 200 series--are better fits, but in carrier networks and the data center core.

Likely targets for the chip, O'Reilly said, include high-density LTE base stations, 10- or 40-Gigabit Ethernet security appliances, line cards for carrier-class or data center core routers and switches, or even controllers for high-performance solid-state storage systems. Indeed, security appliances--which due to their vast computational load of disassembling, scanning and pattern matching struggle to keep up with Ethernet line speeds--seem a particularly promising market. The XLP900's programmable DPI engine, with a dedicated local cache for content processing and a separate grammar-parsing unit for protocol recognition and application identification, can achieve 40-Gbps DPI throughput without loading the CPU cores, according to Broadcom.

Aside from the DPI accelerator, the chip has a significant advantage in raw performance, by factors of two to five when comparing operations per second of data throughput, O'Reilly said. The chip is currently sampling to OEMs, so expect to see some blazing new hardware in time for next year's Las Vegas Interop. Of course, by then we might all be wondering how we'll ever handle 400-Gigabit Ethernet.

Kurt Marko is an IT pro with broad experience, from chip design to IT systems.


Related Reading


Network Computing encourages readers to engage in spirited, healthy debate, including taking us to task. However, Network Computing moderates all comments posted to our site, and reserves the right to modify or remove any content that it determines to be derogatory, offensive, inflammatory, vulgar, irrelevant/off-topic, racist or obvious marketing/SPAM. Network Computing further reserves the right to disable the profile of any commenter participating in said activities.

 
Disqus Tips To upload an avatar photo, first complete your Disqus profile. | Please read our commenting policy.
 
Vendor Comparisons
Network Computing’s Vendor Comparisons provide extensive details on products and services, including downloadable feature matrices. Our categories include:

Next Gen Network Reports

Research and Reports

August 2013
Network Computing: August 2013



TechWeb Careers