Upcoming Events

A Network Computing Webcast:
SSDs and New Storage Options in the Data Center

March 13, 2013
11:00 AM PT / 2:00 PM ET

Solid state is showing up at every level of the storage stack -- as a memory cache, an auxiliary storage tier for hot data that's automatically shuttled between flash and mechanical disk, even as dedicated primary storage, so-called Tier 0. But if funds are limited, where should you use solid state to get the best bang for the buck? In this Network Computing webcast, we'll discuss various deployment options.

Register Now!


Interop Las Vegas 2013
May 6-10, 2013
Mandalay Bay Conference Center
Las Vegas

Attend Interop Las Vegas 2013 and get access to 125+ workshops and conference classes, 350+ exhibiting companies and the latest tech.

Register Now!

More Events »

Subscribe to Newsletter

  • Keep up with all of the latest news and analysis on the fast-moving IT industry with Network Computing newsletters.
Sign Up

Network Overlays: An Introduction

Encapsulation techniques are not without drawbacks, including overhead, complications with load-balancing and interoperability issues with devices like firewalls.

The overhead with any overlay can come in two forms: encapsulation overhead of the frame size and processing overhead on the server from lack of ability to use NIC offload functionality. Both NVGRE and VXLAN suffer from the second problem due to encapsulating in IP within the soft switch. STT skirts the processing overhead problem by using a TCP hack to gain Large Segment Offload (LSO) and Large Receive Offload (LRO) capabilities from the NIC.

All three proposals will suffer from the first problem of encapsulation overhead. With any encapsulation technique you are adding additional headers to the standard frame, as shown in Diagram 3.

Diagram 3

With modern networks the actual overhead of a few additional bytes is negligible. Where it does come into play is the size of the frame on the wire. Adding additional information will require either jumbo frame support or more fragmentation of data to meet standard frame sizes.

The three standards proposals handle this differently. VXLAN is intended to be used within a data center, where jumbo frame support is nearly ubiquitous; therefore, VXLAN assumes support and uses a larger frame size. NVGRE has provisions in the proposal for Path Maximum Transmission Unit (MTU) detection in order to use jumbo frames when possible and standard frame sizes where required. STT will be segmented by the NIC and rely on NIC settings for frame size.

Load balancing spreads traffic across available links to maximize network throughput. It is typically done on a flow basis--that is, by device-to-device conversation. With encapsulation techniques, the inner header information becomes opaque to devices not hardware-capable of recognizing the encapsulation. This means that data normally used to provide load-balancing disappears and all communication appears as a single "flow."

VXLAN handles this issue using a hash of the of the inner payload header information as the UDP source port in the encapsulated packet. This allows for efficient load-balancing in systems relying on 5-tuple algorithms. STT and NVGRE do not provide for as elegant of a solution, and offer up separate possibilities for providing some level of flow control.

Without a granular method of providing flow control, network traffic will bottleneck and lead to congestion that can be detrimental to the network as a whole. This will be more apparent as traffic scales up and increases the demand on network pipes.

In Diagram 4 we see all traffic from the VMs on both hosts traversing the same path, even though two are available. The same would be the case if the links were bonded such as with LACP--one physical link in the bond would always be used. This problem leaves an available link unused, and can result in performance problems if traffic overwhelms the one link being used.

Diagram 4

The last drawback is the challenge with devices such as firewalls. These devices use header information to enforce policies and rules. Because these devices expect a specific packet format, they may be stymied by encapsulated frames. In designs where firewalls sit in the path of encapsulated traffic, administrators will have to configure specific rules, which may be looser than traditional design.

Network overlays provide for virtualized multitenant networks on shared IP infrastructure. This provides for a more scalable design, from 4096 virtual networks to 16 million or more. In addition, a network overlay enables the flexibility and rapid provisioning required by today's business demands. Using overlays, services can be added, moved and expanded without the need for manual configuration of the underlying network infrastructure.

For more information, see these deep-dive posts on VXLAN, SST, and NVGRE.

Disclaimer: This post is not intended as an endorsement of any vendor or product.

Joe Onisick is the Founder of Define the Cloud. You can follow his angry rants at http://www.definethecloud.net or on Twitter @jonisick.


Page: « Previous Page | 1 2  


Related Reading


More Insights


Network Computing encourages readers to engage in spirited, healthy debate, including taking us to task. However, Network Computing moderates all comments posted to our site, and reserves the right to modify or remove any content that it determines to be derogatory, offensive, inflammatory, vulgar, irrelevant/off-topic, racist or obvious marketing/SPAM. Network Computing further reserves the right to disable the profile of any commenter participating in said activities.

 
Disqus Tips To upload an avatar photo, first complete your Disqus profile. | Please read our commenting policy.
 
IaaS Providers
Cloud Computing Comparison
With 17 top vendors and features matrixes covering more than 60 decision points, this is your one-stop shop for an IaaS shortlist.
IaaS Providers

Next Gen Network Reports

Premium Content

Research and Reports

The Virtual Network
February 2013

Network Computing: February 2013

Upcoming Events



TechWeb Careers