David Hill

Network Computing Blogger

Upcoming Events

Where the Cloud Touches Down: Simplifying Data Center Infrastructure Management

Thursday, July 25, 2013
10:00 AM PT/1:00 PM ET

In most data centers, DCIM rests on a shaky foundation of manual record keeping and scattered documentation. OpManager replaces data center documentation with a single repository for data, QRCodes for asset tracking, accurate 3D mapping of asset locations, and a configuration management database (CMDB). In this webcast, sponsored by ManageEngine, you will see how a real-world datacenter mapping stored in racktables gets imported into OpManager, which then provides a 3D visualization of where assets actually are. You'll also see how the QR Code generator helps you make the link between real assets and the monitoring world, and how the layered CMDB provides a single point of view for all your configuration data.

Register Now!

A Network Computing Webinar:
SDN First Steps

Thursday, August 8, 2013
11:00 AM PT / 2:00 PM ET

This webinar will help attendees understand the overall concept of SDN and its benefits, describe the different conceptual approaches to SDN, and examine the various technologies, both proprietary and open source, that are emerging. It will also help users decide whether SDN makes sense in their environment, and outline the first steps IT can take for testing SDN technologies.

Register Now!

More Events »

Subscribe to Newsletter

  • Keep up with all of the latest news and analysis on the fast-moving IT industry with Network Computing newsletters.
Sign Up

See more from this blogger

The Rise of Data-Driven Intelligence

Being able to distinguish between an application-driven intelligence solution and a data-driven intelligence application is important because the development methodology is different. Although both can use agile development methods, there are a number of key differences. For example, Ken Collier in his book Agile Analytics discusses the difference between agile development for data warehousing and business intelligence and that of traditional applications. All in all, you have to know what is different (skill sets, methodology, resources, time frame) for building or using an application-driven intelligence solution vs. a data-driven intelligence application.

Operationally, SLA decisions and IT infrastructure decisions for data-driven intelligence applications probably differ from application-driven intelligence applications. For example, current customer orders must be protected at all cost, so significant data protection, including strong disaster recovery, needs to be in place. However, where external Web data is ingested internally for a big data analysis, it may not make any sense to provide a high level of data protection as the data could simply be re-ingested from its original sources.

More Insights


More >>

White Papers

More >>


More >>

You don't have to worry about trying to fit a project into a particular definition. Big data is a hot topic, but what is it exactly? Doug Laney (now of Gartner) introduced the popular concept of volume, variety and velocity. This is a very powerful and useful idea, but it does not precisely define what is big and what is little. Moreover, size alone does not determine value. Using a data-driven intelligence approach causes you to think about its overall value and the software technology that needs to be applied. If the project seems to fit the bill of big data, then call it that. If it does not but still delivers value, go ahead. Be benefit-driven, not label-driven.

Recognize that collectively data-driven intelligence is the engine that makes more data-centric IT possible. This collective perspective encompasses all the pieces and gives a better sense of the total value that results when viewing the world through a data-driven intelligence lens.

Mesabi Musings

This is a short introduction to a broad subject and will require further discussion both from a general perspective as well as using specific product illustrations. Now, application-driven intelligence tends to focus on operational business processes. Data-driven intelligence tends to fulfill the needs of management information systems.

The big difference is that the proper use of data-driven intelligence will help organizations switch from intuition-based to data-based decisions--a transformation that should have a positive effect at all levels of an organization.

Page: « Previous Page | 1 2  

Related Reading

Network Computing encourages readers to engage in spirited, healthy debate, including taking us to task. However, Network Computing moderates all comments posted to our site, and reserves the right to modify or remove any content that it determines to be derogatory, offensive, inflammatory, vulgar, irrelevant/off-topic, racist or obvious marketing/SPAM. Network Computing further reserves the right to disable the profile of any commenter participating in said activities.

Disqus Tips To upload an avatar photo, first complete your Disqus profile. | Please read our commenting policy.
Vendor Comparisons
Network Computing’s Vendor Comparisons provide extensive details on products and services, including downloadable feature matrices. Our categories include:

Research and Reports

Network Computing: April 2013

TechWeb Careers