David Hill

Network Computing Blogger


Upcoming Events

Where the Cloud Touches Down: Simplifying Data Center Infrastructure Management

Thursday, July 25, 2013
10:00 AM PT/1:00 PM ET

In most data centers, DCIM rests on a shaky foundation of manual record keeping and scattered documentation. OpManager replaces data center documentation with a single repository for data, QRCodes for asset tracking, accurate 3D mapping of asset locations, and a configuration management database (CMDB). In this webcast, sponsored by ManageEngine, you will see how a real-world datacenter mapping stored in racktables gets imported into OpManager, which then provides a 3D visualization of where assets actually are. You'll also see how the QR Code generator helps you make the link between real assets and the monitoring world, and how the layered CMDB provides a single point of view for all your configuration data.

Register Now!

A Network Computing Webinar:
SDN First Steps

Thursday, August 8, 2013
11:00 AM PT / 2:00 PM ET

This webinar will help attendees understand the overall concept of SDN and its benefits, describe the different conceptual approaches to SDN, and examine the various technologies, both proprietary and open source, that are emerging. It will also help users decide whether SDN makes sense in their environment, and outline the first steps IT can take for testing SDN technologies.

Register Now!

More Events »

Subscribe to Newsletter

  • Keep up with all of the latest news and analysis on the fast-moving IT industry with Network Computing newsletters.
Sign Up

See more from this blogger

The Rise of Data-Driven Intelligence

One of the earliest names for information technology was "data processing," which encompassed the need for both data and processing power. However, the glamour of IT for many years was in application development, where a processing- or computing-centric focus ruled the roost. From birth (creation) to death (deletion), most data remained within the control of applications. Of course, applications that analyze data after it has been created have long existed (such as business intelligence and seismic processing), but these applications were a small fraction of practical IT uses. Not any more.

Application-Driven Vs. Data-Driven Intelligence

More Insights

Webcasts

More >>

White Papers

More >>

Reports

More >>

In his book "Reinventing Discovery" (which I recommend, by the way), the author Michael Nielsen discusses data-driven intelligence and contrasts it with artificial intelligence and human intelligence. He defines data-driven intelligence as the ability of computers to extract meaning from data. He differentiates it from artificial intelligence, which he says takes tasks that humans are good at and aims to mimic or improve human performance (such as chess playing) and human intelligence (such as our ability to process visual information). According to Nielsen, data-driven intelligence complements human intelligence by solving different kinds of problems. (Big data, anyone?)

Let's examine what it means from an IT perspective. Application-driven intelligence tends to create, read, update and delete data to fulfill an initial purpose, such as a workflow process to manage order processing, shipping and payment collection. By contrast, data-driven intelligence takes existing data (human- or machine-generated) and uses it for a secondary or additional purpose, such as performing e-discovery on email files or a big data analysis that uses external information gleaned from the Web for upselling or cross-selling customers. Sensory information (such as meter reading) or machine/computer-generated information (such as logs) are created first and then analyzed by a downstream process (which may be in real-time) as appropriate.

From an IT perspective, the application development methodologies (as well as the skill sets of the developers) may be different. From an operational perspective, the service level agreements (SLAs), such as for performance and recoverability of the data, may have to be planned differently. The resources (servers, networks, storage) have to be planned differently as well. IT is familiar with application-driven intelligence-based applications, but has to learn more how to deal with data-driven intelligence applications, such as big data.

Application-Driven Vs. Data-Driven Intelligence
  Application-Driven Intelligence Data-Driven Intelligence
Primary Goal Substitute application intelligence for human intelligence in managing a process Extract meaning and knowledge from data
Description Data is created and managed to fit the needs of the application; typically, the creation of data is part of a process using the application. The application is created and managed to fit the needs of the data, which may be (and likely are) created independent of the application
Example

  • Supply chain management
  • Customer relationship management
  • Content management
  • Online transaction processing

  • Big data
  • Data warehousing
  • Search engine
  • Sensor-based analysis
  • IBM's Watson or Apple's Siri

Source: the Mesabi Group, November 2012

There is nothing new under the sun. Data-driven intelligence (such as statistical analysis using techniques like regression analysis, linear programming and simulation modeling) have been around for a long time. More recently, new concepts have emerged, including data warehousing, online analytical processing and data mining. The problem is that terms such as advanced analytics, business intelligence and big data are regarded as valuable by businesses, but existed as isolated IT islands. However, viewing these siloed (or at best overlapping) efforts and thinking of them in terms of data-driven intelligence provides a way of bringing them together to emphasize the importance of a data-centric focus.

Yes, there are hybrids. Data-driven intelligence can be inserted in an operational system, such as retail sale to check a credit card to see if it is fraudulent, or at points within a supply chain.

Data-driven intelligence is an additive view that broadens our understanding and does not replace application-driven intelligence. Let software intelligence continue to multiply and add to our understanding and the value that we derive from IT.

Next page: Thinking About Data-Driven Intelligence Applications


Page:  1 | 2  | Next Page »


Related Reading


Network Computing encourages readers to engage in spirited, healthy debate, including taking us to task. However, Network Computing moderates all comments posted to our site, and reserves the right to modify or remove any content that it determines to be derogatory, offensive, inflammatory, vulgar, irrelevant/off-topic, racist or obvious marketing/SPAM. Network Computing further reserves the right to disable the profile of any commenter participating in said activities.

 
Disqus Tips To upload an avatar photo, first complete your Disqus profile. | Please read our commenting policy.
 
Vendor Comparisons
Network Computing’s Vendor Comparisons provide extensive details on products and services, including downloadable feature matrices. Our categories include:

Research and Reports

Network Computing: April 2013



TechWeb Careers